Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1011829, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38620036

RESUMO

Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.

2.
Sci Rep ; 14(1): 8543, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609416

RESUMO

The development of an organism is orchestrated by the spatial and temporal expression of genes. Accurate visualisation of gene expression patterns in the context of the surrounding tissues offers a glimpse into the mechanisms that drive morphogenesis. We developed correlative light-sheet fluorescence microscopy and X-ray computed tomography approach to map gene expression patterns to the whole organism`s 3D anatomy. We show that this multimodal approach is applicable to gene expression visualized by protein-specific antibodies and fluorescence RNA in situ hybridisation offering a detailed understanding of individual phenotypic variations in model organisms. Furthermore, the approach offers a unique possibility to identify tissues together with their 3D cellular and molecular composition in anatomically less-defined in vitro models, such as organoids. We anticipate that the visual and quantitative insights into the 3D distribution of gene expression within tissue architecture, by multimodal approach developed here, will be equally valuable for reference atlases of model organisms development, as well as for comprehensive screens, and morphogenesis studies of in vitro models.


Assuntos
Anticorpos , Tomografia Computadorizada por Raios X , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Expressão Gênica
3.
Microsc Microanal ; 29(29 Suppl 1): 1173-1174, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613163
4.
Microsc Microanal ; 29(Supplement_1): 1149-1150, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613272
5.
Microsc Microanal ; 29(29 Suppl 1): 1168-1169, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613336
10.
J Microsc ; 291(3): 248-255, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37433616

RESUMO

Soft X-ray tomography (SXT) is an imaging technique to visualise whole cells without fixation, staining, and sectioning. For SXT imaging, cells are cryopreserved and imaged at cryogenic conditions. Such 'near-to-native' state imaging is in high demand and initiated the development of the laboratory table-top SXT microscope. As many laboratories do not have access to cryogenic equipment, we asked ourselves whether SXT imaging is feasible on dry specimens. This paper shows how the dehydration of cells can be used as an alternative sample preparation to obtain ultrastructure information. We compare different dehydration processes on mouse embryonic fibroblasts in terms of ultrastructural preservation and shrinkage. Based on this analysis, we chose critical point (CPD) dried cells for SXT imaging. In comparison to cryopreserved and air-dried cells, CPD dehydrated cells show high structural integrity although with about 3-7 times higher X-ray absorption for cellular organelles. As the difference in X-ray absorption values between organelles is preserved, 3D anatomy of CPD-dried cells can be segmented and analysed, demonstrating the applicability of CPD-dried sample preparation for SXT imaging. LAY DESCRIPTION: Soft X-ray tomography (SXT) is an imaging technique that allows to see the internal structures of cells without the need for special treatments like fixation or staining. Typically, SXT imaging involves freezing and imaging cells at very low temperatures. However, since many labs lack the necessary equipment, we explored whether SXT imaging could be done on dry samples instead. We compared different dehydration methods and found that critical point drying (CPD) was the most promising for SXT imaging. CPD-dried cells showed high structural integrity, although they absorbed more X-rays than hydrated cells, demonstrating that CPD-dried sample preparation is a viable alternative for SXT imaging.


Assuntos
Desidratação , Imageamento Tridimensional , Animais , Camundongos , Imageamento Tridimensional/métodos , Fibroblastos , Tomografia por Raios X/métodos , Microscopia
11.
Nanoscale ; 15(2): 742-756, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36524744

RESUMO

Super-resolution fluorescence microscopy has revolutionized multicolor imaging of nuclear structures due to the combination of high labeling specificity and high resolution. Here we expanded the recently developed fBALM (DNA structure fluctuation-assisted binding activated localization microscopy) method by developing a stable methodological sequence that enables dual-color imaging of high-resolution genomic DNA together with an immunofluorescently labeled intranuclear protein. Our measurements of the nuclear periphery, imaging DNA and LaminB1 in biologically relevant samples, show that this novel dual-color imaging method is feasible for further quantitative evaluations. We were able to study the relative spatial signal organization between DNA and LaminB1 by means of highly specific colocalization measurements at nanometer resolution. Measurements were performed with and without the antifade embedding medium ProLong Gold, which proved to be essential for imaging of LaminB1, but not for imaging of SytoxOrange labeled DNA. The localization precision was used to differentiate between localizations with higher and lower amounts of emitting photons. We interpret high intensity localizations to be renatured DNA sections in which a high amount of Sytox Orange molecules were bound. This could give insight into the denaturation kinetics of DNA during fBALM. These results were further complemented by measurements of γH2AX and H3K9me3 signal organization to demonstrate differences within the chromatin landscape, which were quantified with image processing methods such as Voronoi segmentation.


Assuntos
Núcleo Celular , Cromatina , Laminas/genética , Laminas/metabolismo , Núcleo Celular/metabolismo , DNA/química , Microscopia de Fluorescência/métodos
12.
Viruses ; 14(12)2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36560654

RESUMO

Upon infection, viruses hijack the cell machinery and remodel host cell structures to utilize them for viral proliferation. Since viruses are about a thousand times smaller than their host cells, imaging virus-host interactions at high spatial resolution is like looking for a needle in a haystack. Scouting gross cellular changes with fluorescent microscopy is only possible for well-established viruses, where fluorescent tagging is developed. Soft X-ray tomography (SXT) offers 3D imaging of entire cells without the need for chemical fixation or labeling. Here, we use full-rotation SXT to visualize entire human B cells infected by the herpes simplex virus 1 (HSV-1). We have mapped the temporospatial remodeling of cells during the infection and observed changes in cellular structures, such as the presence of cytoplasmic stress granules and multivesicular structures, formation of nuclear virus-induced dense bodies, and aggregates of capsids. Our results demonstrate the power of SXT imaging for scouting virus-induced changes in infected cells and understanding the orchestration of virus-host remodeling quantitatively.


Assuntos
Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/química , Tomografia por Raios X/métodos , Capsídeo
13.
STAR Protoc ; 3(1): 101176, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35199039

RESUMO

The protocol describes step-by-step sample preparation, data acquisition, and segmentation of cellular organelles with soft X-ray tomography. It is designed for microscopes built to perform full-rotation data acquisition on specimens in cylindrical sample holders, such as the XM-2 microscope at the Advanced Light Source, LBNL; however, it might be generalized for similar sample holder designs for both synchrotron and table-top microscopes. For complete details on the use and execution of this profile, please refer to Loconte et al. (2021).


Assuntos
Imageamento Tridimensional , Tomografia por Raios X , Imageamento Tridimensional/métodos , Microscopia/métodos , Rotação , Síncrotrons , Tomografia por Raios X/métodos
14.
Cell Rep Methods ; 1(7): 100117, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34729550

RESUMO

High-resolution and rapid imaging of host cell ultrastructure can generate insights toward viral disease mechanism, for example for a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Here, we employ full-rotation soft X-ray tomography (SXT) to examine organelle remodeling induced by SARS-CoV-2 at the whole-cell level with high spatial resolution and throughput. Most of the current SXT systems suffer from a restricted field of view due to use of flat sample supports and artifacts due to missing data. In this approach using cylindrical sample holders, a full-rotation tomogram of human lung epithelial cells is performed in less than 10 min. We demonstrate the potential of SXT imaging by visualizing aggregates of SARS-CoV-2 virions and virus-induced intracellular alterations. This rapid whole-cell imaging approach allows us to visualize the spatiotemporal changes of cellular organelles upon viral infection in a quantitative manner.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico por imagem , Células Epiteliais , Imageamento Tridimensional/métodos , Tomografia por Raios X/métodos
15.
Elife ; 102021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34252023

RESUMO

Organoids derived from pluripotent stem cells promise the solution to current challenges in basic and biomedical research. Mammalian organoids are however limited by long developmental time, variable success, and lack of direct comparison to an in vivo reference. To overcome these limitations and address species-specific cellular organization, we derived organoids from rapidly developing teleosts. We demonstrate how primary embryonic pluripotent cells from medaka and zebrafish efficiently assemble into anterior neural structures, particularly retina. Within 4 days, blastula-stage cell aggregates reproducibly execute key steps of eye development: retinal specification, morphogenesis, and differentiation. The number of aggregated cells and genetic factors crucially impacted upon the concomitant morphological changes that were intriguingly reflecting the in vivo situation. High efficiency and rapid development of fish-derived organoids in combination with advanced genome editing techniques immediately allow addressing aspects of development and disease, and systematic probing of impact of the physical environment on morphogenesis and differentiation.


Assuntos
Células-Tronco Embrionárias/citologia , Organogênese , Organoides/citologia , Retina/citologia , Animais , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Humanos , Morfogênese , Organoides/metabolismo , Oryzias , Células-Tronco Pluripotentes/fisiologia , Retina/crescimento & desenvolvimento , Retina/metabolismo , Peixe-Zebra
16.
PLoS One ; 15(7): e0236420, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32726324

RESUMO

Orientation analysis of fibers is widely applied in the fields of medical, material and life sciences. The orientation information allows predicting properties and behavior of materials to validate and guide a fabrication process of materials with controlled fiber orientation. Meanwhile, development of detector systems for high-resolution non-invasive 3D imaging techniques led to a significant increase in the amount of generated data per a sample up to dozens of gigabytes. Though plenty of 3D orientation estimation algorithms were developed in recent years, neither of them can process large datasets in a reasonable amount of time. This fact complicates the further analysis and makes impossible fast feedback to adjust fabrication parameters. In this work, we present a new method for quantifying the 3D orientation of fibers. The GPU implementation of the proposed method surpasses another popular method for 3D orientation analysis regarding accuracy and speed. The validation of both methods was performed on a synthetic dataset with varying parameters of fibers. Moreover, the proposed method was applied to perform orientation analysis of scaffolds with different fibrous micro-architecture studied with the synchrotron µCT imaging setup. Each acquired dataset of size 600x600x450 voxels was analyzed in less 2 minutes using standard PC equipped with a single GPU.


Assuntos
Sistemas Computacionais , Imageamento Tridimensional/métodos , Ciência dos Materiais/métodos , Conformação Molecular , Algoritmos
17.
PLoS One ; 15(1): e0227601, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31978064

RESUMO

The diversity of living cells, in both size and internal complexity, calls for imaging methods with adaptable spatial resolution. Soft x-ray tomography (SXT) is a three-dimensional imaging technique ideally suited to visualizing and quantifying the internal organization of single cells of varying sizes in a near-native state. The achievable resolution of the soft x-ray microscope is largely determined by the objective lens, but switching between objectives is extremely time-consuming and typically undertaken only during microscope maintenance procedures. Since the resolution of the optic is inversely proportional to the depth of focus, an optic capable of imaging the thickest cells is routinely selected. This unnecessarily limits the achievable resolution in smaller cells and eliminates the ability to obtain high-resolution images of regions of interest in larger cells. Here, we describe developments to overcome this shortfall and allow selection of microscope optics best suited to the specimen characteristics and data requirements. We demonstrate that switchable objective capability advances the flexibility of SXT to enable imaging cells ranging in size from bacteria to yeast and mammalian cells without physically modifying the microscope, and we demonstrate the use of this technology to image the same specimen with both optics.


Assuntos
Imageamento Tridimensional/métodos , Análise de Célula Única/métodos , Tomografia por Raios X/instrumentação , Tomografia por Raios X/métodos , Linfócitos B/citologia , Desenho de Equipamento , Escherichia coli/citologia , Humanos , Schizosaccharomyces/citologia , Análise de Célula Única/instrumentação
18.
Viruses ; 11(10)2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614678

RESUMO

During lytic herpes simplex virus 1 (HSV-1) infection, the expansion of the viral replication compartments leads to an enrichment of the host chromatin in the peripheral nucleoplasm. We have shown previously that HSV-1 infection induces the formation of channels through the compacted peripheral chromatin. Here, we used three-dimensional confocal and expansion microscopy, soft X-ray tomography, electron microscopy, and random walk simulations to analyze the kinetics of host chromatin redistribution and capsid localization relative to their egress site at the nuclear envelope. Our data demonstrated a gradual increase in chromatin marginalization, and the kinetics of chromatin smoothening around the viral replication compartments correlated with their expansion. We also observed a gradual transfer of capsids to the nuclear envelope. Later in the infection, random walk modeling indicated a gradually faster transport of capsids to the nuclear envelope that correlated with an increase in the interchromatin channels in the nuclear periphery. Our study reveals a stepwise and time-dependent mechanism of herpesvirus nuclear egress, in which progeny viral capsids approach the egress sites at the nuclear envelope via interchromatin spaces.


Assuntos
Cromatina/virologia , Infecções por Herpesviridae/patologia , Herpesvirus Humano 1 , Liberação de Vírus , Animais , Linhagem Celular , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Chlorocebus aethiops , Cromatina/ultraestrutura , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/ultraestrutura , Humanos , Microscopia Eletrônica , Microscopia de Fluorescência , Tomografia por Raios X , Células Vero , Replicação Viral
19.
Biochem Soc Trans ; 47(2): 489-508, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30952801

RESUMO

Morphometric measurements, such as quantifying cell shape, characterizing sub-cellular organization, and probing cell-cell interactions, are fundamental in cell biology and clinical medicine. Until quite recently, the main source of morphometric data on cells has been light- and electron-based microscope images. However, many technological advances have propelled X-ray microscopy into becoming another source of high-quality morphometric information. Here, we review the status of X-ray microscopy as a quantitative biological imaging modality. We also describe the combination of X-ray microscopy data with information from other modalities to generate polychromatic views of biological systems. For example, the amalgamation of molecular localization data, from fluorescence microscopy or spectromicroscopy, with structural information from X-ray tomography. This combination of data from the same specimen generates a more complete picture of the system than that can be obtained by a single microscopy method. Such multimodal combinations greatly enhance our understanding of biology by combining physiological and morphological data to create models that more accurately reflect the complexities of life.


Assuntos
Tomografia por Raios X/métodos , Humanos , Microscopia Eletrônica , Microscopia de Fluorescência/métodos , Imagem Multimodal/métodos
20.
PLoS One ; 14(4): e0215137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30973910

RESUMO

Hybrid 3D scaffolds composed of different biomaterials with fibrous structure or enriched with different inclusions (i.e., nano- and microparticles) have already demonstrated their positive effect on cell integration and regeneration. The analysis of fibers in hybrid biomaterials, especially in a 3D space is often difficult due to their various diameters (from micro to nanoscale) and compositions. Though biomaterials processing workflows are implemented, there are no software tools for fiber analysis that can be easily integrated into such workflows. Due to the demand for reproducible science with Jupyter notebooks and the broad use of the Python programming language, we have developed the new Python package quanfima offering a complete analysis of hybrid biomaterials, that include the determination of fiber orientation, fiber and/or particle diameter and porosity. Here, we evaluate the provided tensor-based approach on a range of generated datasets under various noise conditions. Also, we show its application to the X-ray tomography datasets of polycaprolactone fibrous scaffolds pure and containing silicate-substituted hydroxyapatite microparticles, hydrogels enriched with bioglass contained strontium and alpha-tricalcium phosphate microparticles for bone tissue engineering and porous cryogel 3D scaffold for pancreatic cell culturing. The results obtained with the help of the developed package demonstrated high accuracy and performance of orientation, fibers and microparticles diameter and porosity analysis.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea , Pâncreas/citologia , Software , Engenharia Tecidual/métodos , Tecidos Suporte , Automação , Células Cultivadas , Humanos , Modelos Biológicos , Poliésteres/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...